
COMPUTER SCIENCE DEPARTMENT

Falling Back on
Executable Specifications

Hesam SamimiHesam Samimi
Ei Darli AungEi Darli Aung
Todd MillsteinTodd Millstein

University of California, Los Angeles
{hesam,eidarli,todd}@cs.ucla.edu{hesam,eidarli,todd}@cs.ucla.edu

COMPUTER SCIENCE
DEPARTMENT

class LinkedList {

 void sort() {

 < Implementation >

 }

}

Specifications for ReliabilitySpecifications for Reliability

 Oops! Failure / Subtle bug!

COMPUTER SCIENCE
DEPARTMENT

class LinkedList ensures isAcyclic()

 void sort() ensures

 isPermutationOf(old) && isSorted()

 < Implementation >

 }

}

Specifications for ReliabilitySpecifications for Reliability

specification

COMPUTER SCIENCE
DEPARTMENT

class LinkedList ensures isAcyclic()

 void sort() ensures

 isPermutationOf(old) && isSorted()

 < Implementation >

 }

}

Static VerificationStatic Verification

specification

deploymenttestingdevelopment

COMPUTER SCIENCE
DEPARTMENT

Contract CheckingContract Checking

success

invoke method body

assert
(invariants ˄

post-cond)

contract
failure

YES

NO

deploymenttestingdevelopment

COMPUTER SCIENCE
DEPARTMENT

Plan B FallbackPlan B Fallback

success
model
found

invoke method body

assert
(invariants ˄

post-cond)

invoke solver
(invariants ˄ post-cond)

contract
failure

apply model

Runtime

Exception

YES

NO

YES
NO

AA BB

deploymenttestingdevelopment

COMPUTER SCIENCE
DEPARTMENT

• IdeaIdea
 specs not only to validate, but to run as slower/reliable

alternatives to failing implementations
 use a constraint solver to find a model

•satisfying specs non-deterministically

Plan BPlan B

COMPUTER SCIENCE
DEPARTMENT

• Idea
 specs not only to validate, but to run as slower/reliable

alternatives to failing implementations
 use a constraint solver to find a model

•satisfying specs non-deterministically

• BenefitBenefit
 handles arbitrary errors, Runtime Exceptions

Plan BPlan B

COMPUTER SCIENCE
DEPARTMENT

• Idea
 specs not only to validate, but to run as slower/reliable

alternatives to failing implementations
 use a constraint solver to find a model

•satisfying specs non-deterministically

• BenefitBenefit
 handles arbitrary errors, Runtime Exceptions
 intentional fallback (declarative programming) for

complex tasks

Plan BPlan B

COMPUTER SCIENCE
DEPARTMENT

DemoDemo

LinkedList sort

Demo

COMPUTER SCIENCE
DEPARTMENT

Data Structure RepairData Structure Repair
• [Demsky/Rinard '03] [Elkarablieh/Khurshid '07]

• ensures method does not violate data integrity
constraints

• no guarantee to retain method functionality

• patch final state and continue execution
 local search

• relies on implementation to be mostly correct
 some data loss for regaining integrity

COMPUTER SCIENCE
DEPARTMENT

Plan BPlan B

• ensures method post condition is satisfied
 while keeping integrity constraints (invariants)

• starts fresh
 SAT-based constraint solving

• no dependency on implementation
 full functional recovery

COMPUTER SCIENCE
DEPARTMENT

ContributionsContributions

• Plan B: Fallback for method recovery

• PBnJ: Extension of Java
 Specifications

• first order relational logic Alloy [Jackson '02]
 Implementation

• Kodkod [Torlak '09]

• Making fallback practical

• Experience

COMPUTER SCIENCE
DEPARTMENT

ContributionsContributions

• Plan B: Fallback for method recovery

• PBnJ: Extension of Java
 Specifications

• first order relational logic Alloy [Jackson '02]
 Implementation

• Kodkod [Torlak '09]

• Making fallback practical

• Experience

COMPUTER SCIENCE
DEPARTMENT

class Node { int value; Node next; }

class LinkedList ensures isAcyclic() {

 Node head;

}

Specifications in PBnJSpecifications in PBnJ

COMPUTER SCIENCE
DEPARTMENT

class Node { int value; Node next; }

class LinkedList ensures isAcyclic() {

 Node head;

 spec Set<Node> nodes() { return head.*next; }

}

Specifications in PBnJSpecifications in PBnJ

reflexive reflexive
transitive closuretransitive closure

COMPUTER SCIENCE
DEPARTMENT

class Node { int value; Node next; }

class LinkedList ensures isAcyclic() {

 Node head;

 spec Set<Node> nodes() { return head.*next; }

 spec boolean isAcyclic() {

 return head == null ||

 some Node n : nodes() | n.next == null;

 }

}

Specifications in PBnJSpecifications in PBnJ

existential existential
quantificationquantification

COMPUTER SCIENCE
DEPARTMENT

ContributionsContributions

• Plan B: Fallback for method recovery

• PBnJ: Extension of Java
 Specifications

• first order relational logic Alloy [Jackson '02]
 Implementation

• Kodkod [Torlak '09]

• Making fallback practical

• Experience

COMPUTER SCIENCE
DEPARTMENT

ImplementationImplementation

• KodkodKodkod [Torlak '09]
 bounded, relational SAT-based constraint solver

COMPUTER SCIENCE
DEPARTMENT

ImplementationImplementation

• Kodkod [Torlak '09]
 bounded, relational SAT-based constraint solver

• RelationalRelational
 program states as relations, specs as relational op's

•classes as unary relations
 set of instances

•fields as binary relations
 [object, value] tuples

COMPUTER SCIENCE
DEPARTMENT

ImplementationImplementation

• Kodkod [Torlak '09]
 bounded, relational SAT-based constraint solver

• BoundedBounded
 requires bounds per relation

• search space for each variable
• spec unsataisfiable:

 no solution within bounds (contract failure)
 may miss solution outside bounds

COMPUTER SCIENCE
DEPARTMENT

ContributionsContributions

• Plan B: Fallback for method recovery

• PBnJ: Extension of Java
 Specifications

• first order relational logic Alloy [Jackson '02]
 Implementation

• Kodkod [Torlak '09]

• Making fallback practical

• Experience

COMPUTER SCIENCE
DEPARTMENT

Making Fallback PracticalMaking Fallback Practical

• ProblemProblem: search space enormous
•LinkedList sort() with 20 elements

 space size ~ 10 220

COMPUTER SCIENCE
DEPARTMENT

Making Fallback PracticalMaking Fallback Practical

• Problem: search space enormous
•LinkedList sort() with 20 elements

 space size ~ 10

• Approach: Approach: domain specific knowledge as annotations
 such as “modifies clauses”

•disallow spurious solutions
•reduce space, improve solving efficiency

220

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any field in specs

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any field in specs

• limit modifiable fields:

head val:4 next nullval:1 next val:2 next
 l1 n1 n2 n3

 void sort()

 modifies fields LinkedList.head, Node.next {…}

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any field in specs

• limit modifiable fields:

head val:4 next nullval:1 next val:2 next
 l1 n1 n2 n3

 void sort()

 modifies fields LinkedList.head, Node.next {…}

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any field in specs

• limit modifiable fields:

 void sort()

 modifies fields LinkedList.head, Node.next {…}

head val:4 next nullval:1 next val:2 next
 l1 n1 n2 n3

 LinkedList sort() with 20 elements
•space size ~ 10 10
•demo fallback time ~ 4 sec.

220 27

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any reachable object

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any reachable object

• limit modifiable objects:

 void add(Node n)

 modifies objects head == null ? this : tail() {

 ...

 }

head val:4 next nullval:1 next val:2 next
 l1 n1 n2 n3

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any reachable object

• limit modifiable objects:

 void add(Node n)

 modifies objects head == null ? this : tail() {

 ...

 }

head val:4 next nullval:1 next val:2 next
 l1 n1 n2 n3

evaleval
{n3}

COMPUTER SCIENCE
DEPARTMENT

Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any reachable object

• limit modifiable objects:

 void add(Node n)

 modifies objects head == null ? this : tail() {

 ...

 }

head val:4 next nullval:1 next val:2 next
 l1 n1 n2 n3

evaleval
{n3}

COMPUTER SCIENCE
DEPARTMENT

ContributionsContributions

• Plan B: Fallback for method recovery

• PBnJ: Extension of Java
 Specifications

• first order relational logic Alloy [Jackson '02]
 Implementation

• Kodkod [Torlak '09]

• Making fallback practical

• Experience

COMPUTER SCIENCE
DEPARTMENT

ExperienceExperience

• Stress TestsStress Tests on binary trees
 Insert operation

• complex specs
• modifies clauses
• 200 nodes
• Binary Search tree

 4 sec.
• Red Black tree

 21 sec.
 Kodkod's encoding step, not SAT-solving bottleneck

COMPUTER SCIENCE
DEPARTMENT

ExperienceExperience
• Existing SoftwareExisting Software

 expressiveness, ease of deployment, efficiency
 java.awt.GridBagLayout Java layout manager

COMPUTER SCIENCE
DEPARTMENT

ExperienceExperience
• Existing Software Existing Software

 JChessBoard Chess
•valid moves

COMPUTER SCIENCE
DEPARTMENT

Related WorkRelated Work
• Executing Specifications via Constraint SolvingExecuting Specifications via Constraint Solving

 Specification Statement [Morgan '88]
 jmle: Executable JML [Krause/Wahls '06]
 Kaleidoscope [Freeman-Benson/Borning '92] Mixed

Interpreter [Rayside '09]

COMPUTER SCIENCE
DEPARTMENT

Related WorkRelated Work
• Executing Specifications via Constraint Solving

 Specification Statement [Morgan '88]
 jmle: Executable JML [Krause/Wahls '06]
 Kaleidoscope [Freeman-Benson/Borning '92] Mixed

Interpreter [Rayside '09]

• Data Structure RepairData Structure Repair [Demsky/Rinard '03 '05 '09]
 Assertion-based Repair [Elkarablieh/Khurshid '07 '08]

COMPUTER SCIENCE
DEPARTMENT

Related WorkRelated Work
• Executing Specifications via Constraint Solving

 Specification Statement [Morgan '88]
 jmle: Executable JML [Krause/Wahls '06]
 Kaleidoscope [Freeman-Benson/Borning '92] Mixed

Interpreter [Rayside '09]

• Data Structure Repair [Demsky/Rinard '03 '05 '09]
 Assertion-based Repair [Elkarablieh/Khurshid '07 '08]

• ““Contract-based Data Structure Repair Using Alloy”Contract-based Data Structure Repair Using Alloy”
[Nokhbeh Zaeem/Khurshid '10]
 repair-oriented: iterative/heuristic instead of fallback-

oriented: “modifies” annotations

COMPUTER SCIENCE
DEPARTMENT

Future DirectionsFuture Directions

• Other solversOther solvers
 Kodkod with local search, cost optimizing
 SMT vs. Relational solver

COMPUTER SCIENCE
DEPARTMENT

Future DirectionsFuture Directions

• Other solvers
 Kodkod with local search, cost optimizing
 SMT vs. Relational solver

• Aiding offline debuggingAiding offline debugging
 unreasonable to run Plan B next time on same error trace

•error proof helps bug localization
•can model from Plan B help in fixing bugs?

COMPUTER SCIENCE
DEPARTMENT

ConclusionsConclusions

Plan BPlan B a practical use of executable specs:

• Static verification, synthesis major advances
 unlikely to replace online repair and debugging soon

• Online SAT solving reasonable for failed/crashing case

• Declarative code within imperative on complex tasks

• Easy to enable existing software

COMPUTER SCIENCE
DEPARTMENT

Thank You!Thank You!

http://www.cs.ucla.edu/~hesam/planb

http://www.cs.ucla.edu/~hesam/planb

	title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

