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class LinkedList {

  void sort() {

           < Implementation >

  

  }

}

Specifications for ReliabilitySpecifications for Reliability

 Oops! Failure / Subtle bug!
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class LinkedList ensures isAcyclic() 

  void sort() ensures 

  isPermutationOf(old) && isSorted() 

           < Implementation >

  }

}

Specifications for ReliabilitySpecifications for Reliability

specification
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class LinkedList ensures isAcyclic() 

  void sort() ensures 

  isPermutationOf(old) && isSorted() 

           < Implementation >

  }

}

Static VerificationStatic Verification

specification

deploymenttestingdevelopment
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Contract CheckingContract Checking
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Plan B FallbackPlan B Fallback
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 use a constraint solver to find a model 

•satisfying specs non-deterministically
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• Idea
 specs not only to validate, but to run as slower/reliable

alternatives to failing implementations
 use a constraint solver to find a model

•satisfying specs non-deterministically

• BenefitBenefit
 handles arbitrary errors, Runtime Exceptions
 intentional fallback (declarative programming) for 

complex tasks

Plan BPlan B
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DemoDemo

LinkedList sort 

Demo
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Data Structure RepairData Structure Repair
• [Demsky/Rinard '03]    [Elkarablieh/Khurshid '07] 

• ensures method does not violate data integrity 
constraints

• no guarantee to retain method functionality

• patch final state and continue execution
 local search

• relies on implementation to be mostly correct
 some data loss for regaining integrity
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Plan BPlan B

• ensures method post condition is satisfied 
 while keeping integrity constraints (invariants)

• starts fresh
 SAT-based constraint solving

• no dependency on implementation
 full functional recovery
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•  Plan B: Fallback for method recovery

•   PBnJ: Extension of Java
   Specifications

•    first order relational logic Alloy [Jackson '02]
   Implementation

•    Kodkod [Torlak '09]

•   Making fallback practical

•   Experience
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class Node { int value; Node next; }

class LinkedList ensures isAcyclic() {

  Node head;

  

}

Specifications in PBnJSpecifications in PBnJ
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class Node { int value; Node next; }

class LinkedList ensures isAcyclic() {

  Node head;

  spec Set<Node> nodes() { return head.*next; }

  

}

Specifications in PBnJSpecifications in PBnJ

reflexive reflexive 
transitive closuretransitive closure
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class Node { int value; Node next; }

class LinkedList ensures isAcyclic() {

  Node head;

  spec Set<Node> nodes() { return head.*next; }

  spec boolean isAcyclic() { 

    return head == null || 

          some Node n : nodes() | n.next == null; 
  

  }

  

}

Specifications in PBnJSpecifications in PBnJ

existential existential 
quantificationquantification
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ImplementationImplementation

• Kodkod [Torlak '09] 
 bounded, relational SAT-based constraint solver

• RelationalRelational
 program states as relations, specs as relational op's

•classes as unary relations 
 set of instances

•fields as binary relations
 [object, value] tuples
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ImplementationImplementation

• Kodkod [Torlak '09] 
 bounded, relational SAT-based constraint solver

• BoundedBounded
 requires bounds per relation

• search space for each variable
• spec unsataisfiable: 

 no solution within bounds (contract failure)
 may miss solution outside bounds
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•  Plan B: Fallback for method recovery

•   PBnJ: Extension of Java
   Specifications

•    first order relational logic Alloy [Jackson '02]
   Implementation

•    Kodkod [Torlak '09]

•   Making fallback practical

•   Experience
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 space size ~ 10 220
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Making Fallback PracticalMaking Fallback Practical

• Problem: search space enormous
•LinkedList sort() with 20 elements

 space size ~ 10

• Approach: Approach: domain specific knowledge as annotations 
 such as “modifies clauses”

•disallow spurious solutions
•reduce space, improve solving efficiency 

220
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  void sort()

  modifies fields LinkedList.head, Node.next {…}
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Modifies ClausesModifies Clauses
• by default fallback is allowed to modify any field in specs

• limit modifiable fields:

  void sort()

  modifies fields LinkedList.head, Node.next {…}

head val:4 next nullval:1 next val:2 next
      l1                 n1                     n2                      n3

 LinkedList sort() with 20 elements
•space size ~ 10         10
•demo fallback time ~ 4 sec.

220 27
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  modifies objects head == null ? this : tail() { 
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ExperienceExperience

• Stress TestsStress Tests on binary trees
 Insert operation

•  complex specs
•  modifies clauses
•  200 nodes   
•  Binary Search tree

 4 sec.  
•  Red Black tree

 21 sec.
 Kodkod's encoding step, not SAT-solving bottleneck
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ExperienceExperience
• Existing SoftwareExisting Software 

 expressiveness, ease of deployment, efficiency
 java.awt.GridBagLayout Java layout manager  
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ExperienceExperience
• Existing Software Existing Software 

 JChessBoard Chess
•valid moves
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 Specification Statement [Morgan '88]
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 Kaleidoscope [Freeman-Benson/Borning '92] Mixed 

Interpreter [Rayside '09]
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Related WorkRelated Work
• Executing Specifications via Constraint Solving

 Specification Statement [Morgan '88]
 jmle: Executable JML [Krause/Wahls '06] 
 Kaleidoscope [Freeman-Benson/Borning '92] Mixed 

Interpreter [Rayside '09]

•   Data Structure Repair [Demsky/Rinard '03 '05 '09]
 Assertion-based Repair [Elkarablieh/Khurshid '07 '08]

•   ““Contract-based Data Structure Repair Using Alloy”Contract-based Data Structure Repair Using Alloy” 
[Nokhbeh Zaeem/Khurshid '10]
 repair-oriented: iterative/heuristic instead of fallback-

oriented: “modifies” annotations
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 Kodkod with local search, cost optimizing
 SMT vs. Relational solver
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Future DirectionsFuture Directions

•  Other solvers
 Kodkod with local search, cost optimizing
 SMT vs. Relational solver

•  Aiding offline debuggingAiding offline debugging
 unreasonable to run Plan B next time on same error trace

•error proof helps bug localization
•can model from Plan B help in fixing bugs?
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ConclusionsConclusions

Plan BPlan B a practical use of executable specs:

• Static verification, synthesis major advances
 unlikely to replace online repair and debugging soon

• Online SAT solving reasonable for failed/crashing case

• Declarative code within imperative on complex tasks

• Easy to enable existing software 
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Thank You!Thank You!

http://www.cs.ucla.edu/~hesam/planb

http://www.cs.ucla.edu/~hesam/planb
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